Optimal Filtering Exercise 1

Gustaf Hendeby* gustaf.hendeby@liu.se

Version: 2023-11-11

Problem 1.1 Consider the following block matrix

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix},$$

where $|A| \neq 0$, $|D| \neq 0$, and |A| denotes the determinant of the matrix A.

a) Derive the block UDL factorization of

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix}$$

,

i.e., find *X*, *Y*, Δ_1 , and Δ_2 such that

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} = \begin{pmatrix} I & X \\ 0 & I \end{pmatrix} \begin{pmatrix} \Delta_1 & 0 \\ 0 & \Delta_2 \end{pmatrix} \begin{pmatrix} I & 0 \\ Y & I \end{pmatrix}$$

 $\begin{pmatrix} A & B \\ C & D \end{pmatrix}.$

b) Derive the inverse of

c) Show that

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} = |A - BD^{-1}C||D|.$$

Problem 1.2 Let

$$\begin{pmatrix} x \\ y \end{pmatrix} \sim \mathcal{N} \left(\begin{pmatrix} \mu_x \\ \mu_y \end{pmatrix}, \begin{pmatrix} \Sigma_{xx} & \Sigma_{xy} \\ \Sigma_{yx} & \Sigma_{yy} \end{pmatrix} \right).$$

Show that the conditional pdf $p_{X|Y}(x|y)$ is Gaussian with mean

$$\mu_{x|y} = \mu_x + \Sigma_{xy} \Sigma_{yy}^{-1} (y - \mu_y)$$

and covariance

$$\Sigma_{x|y} = \Sigma_{xx} - \Sigma_{xy} \Sigma_{yy}^{-1} \Sigma_{yx}.$$

Hint: Use the results from Problem 1.1.

^{*}These exercises are heavily inspired by exercises used by Isaac Skog (LiU) and Mats Bengtsson (KTH).

Problem 1.3 Suppose X and Y are jointly distributed random variables. When Y is unknown, an appealing estimate of the value of X is its mean value $\mu_x = E[X]$. This estimate has the property

$$\mathsf{E}[||X - \mu_x||^2] \le \mathsf{E}[||X - z||^2]$$

for all *z*, and has the average error $\mathsf{E}[||X - \mu_x||^2]$. Now suppose that one is told that Y = y. Let $\hat{x} = \mathsf{E}_{X|Y=y}[X]$. Show that

$$\mathsf{E}_{X|Y=y}[\|X-\hat{x}\|^2] \le \mathsf{E}_{X|Y=y}[\|X-\mu_x\|^2].$$

This directly gives the intuitively reasonable result that the mean estimation error $\mathsf{E}[||X - \hat{x}||^2]$ averaged over all values of X and Y is be bounded from above by $\mathsf{E}[||X - \mu_x||^2]$. When is this bound attained, *i.e.*, when is there no improvement in the knowledge of X given the value of Y?

Problem 1.4 Given a zero-mean wide-sense stationary process y(t) with *auto correlation function* (acf) $r_{yy}(\tau)$, derive the linear least-squares estimate of

$$\int_0^T y(t) \, dt$$

in terms of its values at the end points y(0) and y(T).

Assuming that the covariance function is

$$r_{yy}(\tau)=e^{-\alpha|t|},$$

show that the estimate is

$$\frac{1}{\alpha} \tanh \frac{\alpha T}{2} \left(y(0) + y(T) \right).$$

Furthermore, provide an approximate estimate that holds for small T.

Problem 1.5 Assume *X* and *Z* are independent (jointly) Gaussian random variables with means μ_x and μ_z , respectively, and with covariance matrices Σ_{xx} and Σ_{zz} . Then Y = X + Z is Gaussian and $p_{X|Y}(x|y)$ is a Gaussian density function. Show that the associated conditional mean and covariance are

$$\mu_{x|y} = \sum_{zz} (\sum_{xx} + \sum_{zz})^{-1} \mu_x + \sum_{xx} (\sum_{xx} + \sum_{zz})^{-1} (y - \mu_z)$$

= $\sum_{x|y} (\sum_{xx}^{-1} \mu_x + \sum_{zz}^{-1} (y - \mu_z))$

and

$$\begin{split} \Sigma_{x|y} &= \Sigma_{xx} - \Sigma_{xx} (\Sigma_{xx} + \Sigma_{zz})^{-1} \Sigma_{xx} \\ &= \left(\Sigma_{xx}^{-1} + \Sigma_{zz}^{-1} \right)^{-1}, \end{split}$$

respectively.

Hint: Begin by deriving the joint density $p_{X,Y}(x,y)$ and assume that the inverses exist.