Optimal Filtering Exercise 3

Gustaf Hendeby* gustaf.hendeby@liu.se

Version: 2023-11-11

Problem 3.1 Assume the following measurement function

 $\mathbf{y}_k = \mathbf{H}_k \mathbf{x}_k + \mathbf{v}_k,$

where v_k is zero-mean Gaussian with covariance \mathbf{R}_k . Show that if \mathbf{R}_k is singular, a matrix A exists such that Ay_k is a deterministic function of x_k . What is the maximum rank of A for which this property holds?

Problem 3.2 Consider the standard linear state-space model

$$
\mathbf{x}_{k+1} = \mathbf{F}_k \mathbf{x}_k + \mathbf{G}_k \mathbf{w}_k \qquad \text{cov}(\mathbf{w}_k) = \mathbf{Q}_k \n\mathbf{y}_k = \mathbf{H}_k \mathbf{x}_k + \mathbf{v}_k \qquad \text{cov}(\mathbf{v}_k) = \mathbf{R}_k,
$$

with $S_k = 0$ and assume $\Pi_0 \succ 0$.

a) Make necessary assumptions and show that the covariance of a two-step predictor is given by

$$
\mathbf{P}_{k+1|k-1} = \mathbf{F}_k \mathbf{P}_{k|k-1} \mathbf{F}_k^* + \mathbf{G}_k \mathbf{Q}_k \mathbf{G}_k^*
$$

b) Find the relationship between $\tilde{\mathbf{x}}_{k+1|k-1}$ and $\tilde{\mathbf{x}}_{k+1|k}$, where $\tilde{\mathbf{x}}_{i|j} = \mathbf{x}_i - \hat{\mathbf{x}}_{i|j}$, and use it to show that

$$
\mathbf{P}_{k+1|k-1} = \mathbf{P}_{k+1|k} + \mathbf{F}_k \mathbf{P}_{k|k-1} \mathbf{H}_k^* \big(\mathbf{R}_k + \mathbf{H}_k \mathbf{P}_{k|k-1} \mathbf{H}_k^*\big)^{-1} \mathbf{H}_k \mathbf{P}_{k|k-1} \mathbf{F}_k^*
$$

Problem 3.3 The matrix $P_{k+1|k}$ is per definition non-negative definite symmetric because it is a covariance matrix. Show by induction arguments that the Kalman filter equations for calculating $P_{k+1|k}$ imply (algebraically) that $P_{k+1|k}$ is nonnegative definite symmetric.

^{*}These exercises are heavily inspired by exercises used by Isaac Skog (LiU) and Mats Bengtsson (KTH).

Problem 3.4 Your task is to derive a Kalman based solution to estimate the initial state value x_0 given the measurements $\{y_0, y_1, \ldots, y_k\}$. Assume the standard linear state-space model

$$
\mathbf{x}_{k+1} = \mathbf{F}_k \mathbf{x}_k + \mathbf{G}_k \mathbf{w}_k
$$

\n
$$
\mathbf{y}_k = \mathbf{H}_k \mathbf{x}_k + \mathbf{v}_k
$$

\n
$$
\mathbf{Cov}(\mathbf{w}_k) = \mathbf{Q}_k
$$

\n
$$
\mathbf{Cov}(\mathbf{v}_k) = \mathbf{R}_k
$$

with $S_k = 0$.

Show that the resulting estimate is given by the standard Kalman filter for x_k extended with the following equations

$$
\mathbf{K}_{k}^{0} = \mathbf{P}_{k}^{0} \mathbf{H}_{k}^{*} (\mathbf{H}_{k} \mathbf{P}_{k|k-1} \mathbf{H}_{k}^{*} + \mathbf{R}_{k})^{-1}
$$

$$
\hat{\mathbf{x}}_{0|k} = \hat{\mathbf{x}}_{k}^{0} = \hat{\mathbf{x}}_{k-1}^{0} + \mathbf{K}_{k}^{0} (\mathbf{y}_{k} - \mathbf{H}_{k} \hat{\mathbf{x}}_{k|k-1})
$$

$$
\mathbf{P}_{k+1}^{0} = \mathbf{P}_{k}^{0} \mathbf{F}_{k}^{*} - \mathbf{K}_{k}^{0} \mathbf{H}_{k} \mathbf{P}_{k|k-1} \mathbf{F}_{k}^{*}
$$

$$
\mathbf{P}_{k+1}^{00} = \mathbf{P}_{k}^{00} - \mathbf{K}_{k}^{0} \mathbf{H}_{k} (\mathbf{P}_{k}^{0})^{*}
$$

which is initialized by

$$
\begin{aligned} &\hat{\mathbf{x}}_{-1}^0 = \hat{\mathbf{x}}_{0|-1} \\ &\mathbf{P}_0^{00} = \mathbf{P}_0^0 = \mathbf{P}_{0|-1} \end{aligned}
$$

Furthermore, explain what P_k^0 and P_k^{00} denote and represent conceptually.

Hint: Introduce an extended state vector $\begin{pmatrix} \mathbf{x}_k \\ \mathbf{x}_k \end{pmatrix}$ \mathbf{x}_k^0), where $\mathbf{x}_{k+1}^0 = \mathbf{x}_k^0$, $\forall k \geq 0$, in addition to the standard state-space model. To match the results above, study the one-step Kalman predictions.

Problem 3.5 Filtered residuals $\boldsymbol{\mu}_k$ are defined as

$$
\mathbf{y}_k = \mathbf{H}_k \mathbf{x}_k + \mathbf{v}_k
$$

\n
$$
\boldsymbol{\mu}_k = \mathbf{y}_k - \mathbf{H}_k \hat{\mathbf{x}}_{k|k}.
$$

\n
$$
\mathbf{Cov}(\mathbf{v}_k) = R_k
$$

Furthermore, define $\mathbf{e}_k = \mathbf{y}_k - \mathbf{\hat{y}}_{k|k-1}$.

Show that

- a) $\mu_k = R_k R_{e_k}^{-1} e_k$
- **b**) $\{\mu_k\}$ is a white sequence with covariance matrix $\mathbf{R}_k^{\mu} = \mathbf{R}_k \mathbf{H}_k \mathbf{P}_{k|k} \mathbf{H}_k^*$.