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Problem 5.1 Consider the following state-space model
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where E [Wkwﬂ = GV%IQS/(,[, E [VkV;F] = 03126,(,,, and E [WkV}k] =0,.
a) Determine the transfer function H(z) from yj to & 1| for the stationary Kalman filter.
b) Plot the frequency response of H(z). How does the ratio 62 /o2 affect the filter characteristics?

Problem 5.2 We wish to estimate the position of an aircraft from noisy radar observations. This is often referred
to as a tracking problem. To start with, we will construct a process and measurement model. The
aircraft moves with velocity v at an angle 6. We measure r and ¢.
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be the state vector. Assume a constant velocity Z;(n+ 1) = z;(n) and that the time between samples
isT.
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Figure 1: Geometry of the tracking problem.

*These exercises are heavily inspired by exercises used by Isaac Skog (LiU) and Mats Bengtsson (KTH).
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Problem 5.3
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Derive the state-space model of the scenario in Figure 1, i.e., find the matrices F and H. In the
measurement equation, do a variable transformation such that the measurements are z; and z;.
The process and measurement noise are assumed independent and white with constant covariance
matrices Q and R.

We can improve the model by using time-varying covariance matrices. Assume that the distur-
bances of v and 6 are modeled by

vin+1)=v(n)+e,(n)
0(n+1)=0(n)+eq(n),

where the noises e, (n) and eg(n) are independent with variances 67 and o, respectively.
The measurements are given by

F(n) = r(n) +e(n)

¢(n) = @(n) +ep(n),

where r(n) and @(n) are assumed independent, e,(n) and eg(n) have variances 6 and 63, respec-
tively.
Show that the process noise covariance, Q, can be modeled by:
(022 = E[w}(n)] = 67 cos? 6(n) + ogv*(n) sin” 6 (n)
(044 =E[wj(n)] = o7 sin® 6(n) + 65V (n) cos® 0 (n)

[0]24 = E[wa(n)wa(n)] = (sz —? (n)Gg) cos O(n)sinO(n)
Show that the measurement noise covariance, R, can be modeled by:

Rl11 = E[e%(n)} = 62 cos> @(n) + G(%rz(n) sin® @(n)
[R22 = E[e3(n)] = o} sin® @(n) + 051 (n) cos® (n)
[Rl12 =E[e1(n)ez(n)] = (07 —r*(n)0,) cos @(n) sin@(n)
Write scripts (in your language of choice) that plot the states and the outputs, assume the initial
state x(0) = (10 1 20 Z)T. Use N = 100 samples. Use the following values for the two cases:
i) T=1,0=0.11,and R = 51.
(i) T=1,062=0.01, 05 =0.01, 67 = 1, and 0, = 0.1.

Plot the trajectory and the measured trajectory in the same figure.

Design and implement (you are supposed to implement this yourself not simply use an existing
toolbox) the Kalman filter associated with the radar problem given above.

Utilizing the assumptions made in Problem 5.2a; compare the optimal filter, K(n), to the stationary
Kalman filter, K. (You might want to try with higher noise variance).
Hint: The command idare in MATLAB (or similar) might prove useful.

Compare the time-varying Kalman filter designed using the result in Problem 5.2b to a Kalman
filter using fixed covariance matrices (Problem 5.1a).

In both parts, try the filters with different initial values, P(0) and x(0). How does the choice of
P(0) and x(0) affect the behavior?



