Optimal Filtering Le 1: Introduction

Gustaf Hendeby

Div. Automatic Control Dept. Electrical Engineering gustaf.hendeby@liu.se

Course Information

Optimal Filtering Le 1: Introduction G. Hendeby 2/7

Course Content

- Least-squares (LS) estimation:
 - Important properties.
 - Geometric interpretation.
- Wiener filter (discrete time)
- Kalman filter (discrete time):
 - State-space models and Markov process
 - The Kalman filter
 - The innovation process
 - Information Form

Observability and controllability

LINKÖPING UNIVERSITY

Optimal Filtering Le 1: Introduction

G. Hendeby

3/7

Course Facts

Course activities:

- 6 lectures.
- 5 homework assignments.
- 1 project exercise.

Credits:

• 6 ETCS credits

Examiner:

Gustaf Hendeby < gustaf.hendeby@liu.se>

Course homepage:

• https://optfilt.edu.hendeby.se

Course textbook:

• T. Kailath, A. H. Sayed, and B. Hassibi. Linear Estimation. Prentice-Hall, Inc. 2000. ISBN 0-13-022464-2.

Optimal Filtering Le 1: Introduction G. Hendeby 2023 4/7

Intended Learning Outcomes

- Understand to which type of estimation problems linear estimation can be applied
- Understand the relationship between computational complexity, filter structure, and performance.
- Understand the relationship between optimal filtering, linear estimation, and Wiener/Kalman filtering.
- Approach estimation problems in a systematic way.
- Derive and manipulate the time discrete Wiener filter equations and compute the Wiener filter for a given estimation problem.
- Derive and manipulate the time discrete Kalman filter equations and compute the Kalman filter for a given estimation problem.
- Analyze properties of optimal filters.
- Implement Wiener and Kalman filters (time discrete) and state-space models using Matlab.
- Simulate state-space models and optimal filters, analyze the results, optimize the filter performance, and provide a written report on the findings.
- Formulate logical arguments, orally and in writing, in a way that is considered valid in scientific
 publications and presentations within the topic area.

Optimal Filtering Le 1: Introduction G. Hendeby 2023 6/7

Lecture Schedule (suggested)

Le	Topic	Date	
1	Intro. & LLMSE	Sept 19	15–17
2	LLMSE: geometric interpretation, Wiener filter	Oct 3	10-12
3	Bayesian estimation	Oct 17	10-12
4	Kalman filter	Nov 6	10-12
5	(Kalman) filter properties	Nov 21	13-15
6	Kalman filter variations	Dec 6	13–15

• Homework 5 review deadline: Dec 20

• Project deadline: Dec 20

Before we leave today, we should have decided on the remaining dates!

Optimal Filtering Le 1: Introduction G. Hendeby 2023 5/7

Examination

Homework

- 5 homework (mostly theoretical) assignments (50 points each).
- Each homework comprises 5 tasks worth 10 points each.
- Passing requirement: 200 points (80 %).
- Peer-review corrected in groups.

I'll assign groups and give you solutions to correct.

Project

- 1 (more practical) project assignment.
- "Conference paper" style report.
- Corrected by me.

Questions?

