Lecture #1:

Stochastic Least Squares (LS) Estimation

Gustaf Hendeby gustaf.hendeby@liu.se

Version: 2023-11-11

We will start off by studying the least squares estimator.

Theorem 1. Let X and Y be two jointly distributed random variables. The least squares (minimum variance, MV) estimator \hat{X} of X given Y is

$$\hat{X} = \mathsf{E}_{X|Y} \big[X \big]$$

and $\hat{x} = \mathsf{E}_{X|Y=y}[X]$ is the matching (deterministic) estimate.

Proof. Let $\tilde{X} = X - \hat{X} = X - h(Y)$, then we seek the function $h(\cdot)$ that solves

$$\min_{h(\cdot)} \mathsf{E}[\tilde{X}^*\tilde{X}],$$

where A^* is the Hermitian transpose of A.

Note:
$$\mathsf{E}_{XY} \big[g^*(Y) X \big] = \mathsf{E}_X \Big[\mathsf{E}_{X|Y} \big[g^*(Y) X \big] \Big] = E_Y \Big[g^*(Y) \, \mathsf{E}_{X|Y} \big[X \big] \Big]$$

$$\begin{split} \mathsf{E}\big[\tilde{X}^*\tilde{X}\big] &= \mathsf{E}\big[(X-\hat{X})^*(X-\hat{X})\big] = \mathsf{E}\Big[\big(X-\mathsf{E}_{X|Y}\big[X\big] + \mathsf{E}_{X|Y}\big[X\big] - \hat{X}\big)^*\big(X-\mathsf{E}_{X|Y}\big[X\big] + \mathsf{E}_{X|Y}\big[X\big] - \hat{X}\big)\Big] \\ &= \Big/g(Y) = \mathsf{E}_{X|Y}\big[X\big] - \hat{X}\Big/ = \mathsf{E}\Big[\big(X-\mathsf{E}_{X|Y}\big[X\big] + g(Y)\big)^*\big(X-\mathsf{E}_{X|Y}\big[X\big] + g(Y)\big)\Big] \\ &= \mathsf{E}\Big[\big(X-\mathsf{E}_{X|Y}\big[X\big]\big)^*\big(X-\mathsf{E}_{X|Y}\big[X\big]\big)\Big] + \mathsf{E}\Big[g^*(Y)g(Y)\Big] + 2\operatorname{Re}\underbrace{\mathsf{E}\Big[g^*(Y)\big(X-E_{X|Y}\big[X\big]\big)\Big]}_{=\mathsf{E}_Y\big[g^*(Y)\mathsf{E}_{X|Y}\big[X-\mathsf{E}_{X|Y}\big[X\big]\big)\Big]}_{=\mathsf{E}_Y\big[g^*(Y)\mathsf{E}_{X|Y}\big[X\big] - \hat{X}\big)^*\big(\mathsf{E}_{X|Y}\big[X\big] - \hat{X}\big)\Big]} \\ &= \mathsf{E}\Big[\big(X-\mathsf{E}_{X|Y}\big[X\big]\big)^*\big(X-\mathsf{E}_{X|Y}\big[X\big]\big)\Big] + \mathsf{E}\Big[\big(\mathsf{E}_{X|Y}\big[X\big] - \hat{X}\big)^*\big(\mathsf{E}_{X|Y}\big[X\big] - \hat{X}\big)\Big] \end{split}$$

This expression is minimized by $\hat{X} = \mathsf{E}[X|Y]$, as both terms are positive and only the second depends on \hat{X} .

1 Conditional vs Unconditional MSE

There are two possibilities versions of MSE:

Unconditional:

$$\mathsf{E} \big[\big(X - \hat{X}(Y) \big)^* \big(X - \hat{X}(Y) \big) \big]$$
 (expectation of both *X* and *Y*)

Conditional:

$$\mathsf{E}_{X|Y=y}[(X-\hat{X}(Y))^*(X-\hat{X}(Y))] = \mathsf{E}_{X|Y=y}[X^*X] - \hat{x}^*\hat{x}$$

Generally the unconditional and the conditional MSE are not the same, but in the Gaussian case they are! (See HW #1.)

2 Unbiasedness

Unbiasedness is defined as the estimator/estimate that on average assumes the true value, that is

Estimator:

$$\mathsf{E}_{XY}\big[X - \hat{X}(Y)\big] = \mathsf{E}_{X}\big[X\big] - \underbrace{\mathsf{E}_{Y}\Big[\mathsf{E}_{X|Y}\big[X\big]\Big]}_{\mathsf{E}_{X}[X]} = 0$$

Estimate:

$$\mathsf{E}_{X|Y}\big[X-\hat{x}\big] = \mathsf{E}_{X|Y=y}\big[X\big] - \hat{x} = 0$$

3 Problem with Explicit Solutions

- The estimate \hat{x} is often a complicated function of the observations y_1, \dots, y_N .
- Knowledge of the joint pdf is needed.

4 Linear LS estimation

If our estimate \hat{x} of X is restricted to be a linear function (including affine mappings), then \hat{x} only depends on the first and second order moments of X and Y. If X and Y are jointly Gaussian, then the conditional mean $\mathsf{E}_{Y|Y}[X]$ is a linear function of the observations.

4.1 Gaussian case (Part of HW #1)

If

$$\begin{pmatrix} x \\ y \end{pmatrix} \sim \mathcal{N} \left(\begin{pmatrix} \mu_x \\ \mu_y \end{pmatrix}, \begin{pmatrix} \Sigma_{xx} & \Sigma_{xy} \\ \Sigma_{yx} & \Sigma_{yy} \end{pmatrix} \right)$$

then the conditional pdf $f_{X|Y}(x|y)$ is Gaussian with

mean: $\mu_{x|y} = \mu_x + \Sigma_{xy} \Sigma_{yy}^{-1} (y - \mu_y)$

covariance: $\Sigma_{x|y} = \Sigma_{xx} - \Sigma_{xy} \Sigma_{yy}^{-1} \Sigma_{yx}$

which yields

$$\mathsf{E}_{X|Y=y}\big[X\big] = \mu_x + \Sigma_{xy}\Sigma_{yy}^{-1}(y - \mu_y)$$

4.2 Linear LSE (derivation scalar case)

Let $\hat{X} = aY + b$ and find the a and b that minimizes the MSE $E[(X - \hat{X})^2]$.

$$\begin{split} \frac{\partial \operatorname{E}\left[(X-\hat{X})^2\right]}{\partial a} &= 2\operatorname{E}\left[(X-aY-b)\frac{\partial(X-\hat{X})}{\partial a}\right] = -2\left(\operatorname{E}\left[XY\right] - a\operatorname{E}\left[Y^2\right] - b\operatorname{E}\left[Y\right]\right) = 0\\ \frac{\partial \operatorname{E}\left[(X-\hat{X})^2\right]}{\partial b} &= -2\operatorname{E}\left[X-aY-b\right] = 0 \end{split}$$

yielding

$$a = \frac{\mathsf{E}[XY] - \mu_x \mu_y}{\mathsf{E}[Y^2] - \mu_y^2} = \frac{\sigma_{xy}^2}{\sigma_y^2}$$
$$b = \mu_x - \frac{\sigma_{xy}^2}{\sigma_y^2} \mu_y$$

that is

$$\hat{X} = \mu_x + \frac{\sigma_{xy}^2}{\sigma_y^2} (Y - \mu_y).$$

- Note: To compute the estimator only requires the first and second order moments.
- The vector case follows analogous [1, Sec. 3.2.8]:

$$\hat{X} = \mu_x + \Sigma_{xy} \Sigma_{yy}^{-1} (Y - \mu_y).$$

• Generally we will assume μ_x , $\mu_y = 0$ without loss of generality.

4.3 Genereic Solution and Comutational Complexity

If

$$\hat{X}_N = \sum_{i=0}^N a_{N,i}^T y_{N-i},$$

where N is the number of observations and the zero mean assumption is used, then the coefficients

$$A_N = \begin{pmatrix} a_{N,0} & \dots & a_{N,N} \end{pmatrix}$$

are the solution to $A_N R_y = R_{xy}$. This is a standard problem to slow, but

- Requires $\mathcal{O}(N^3)$ operations to compute.
- Often a recursive solution is desired, *i.e.*, $A_N \rightarrow A_{N+1}$ and $\hat{x}_N \rightarrow \hat{x}_{N+1}$.

If we impose a structure on R_y we can reduce the complexity and find a recursive update.

4.3.1 Example:

Assume X(t) to be a *wide-sense stationary* (wss.) process, where the mean is $\mu_x = \mathsf{E}\big[X(t)\big] = 0$ and the auto correlation function $r_{xx}(\tau) = e^{-\alpha|\tau|}$.

Predict $X(3T + \Delta)$, $\Delta > 0$ given X(T), X(2T), and X(3T). The estimator (predictor) should be a llse. Given that the mean $\mu_X = 0$ it follows that

$$\hat{X} = ay,$$
 $y = \begin{pmatrix} X(T) & X(2T) & X(3T) \end{pmatrix}^T$

where $a = \Sigma_{xy} \Sigma_{yy}^{-1}$

$$\Sigma_{xy} = \mathsf{E}[X(3T + \Delta)y^T] = e^{-\alpha\Delta} \begin{pmatrix} e^{-\alpha 2T} & e^{-\alpha T} & 1 \end{pmatrix}$$

$$\Sigma_{yy} = \begin{pmatrix} 1 & e^{-\alpha T} & e^{-2\alpha T} \\ e^{-\alpha T} & 1 & e^{-\alpha T} \\ e^{-2\alpha T} & e^{-\alpha T} & 1 \end{pmatrix}$$

assuming that $\alpha T \neq 0$ it follows that

$$a = \Sigma_{xy} \Sigma_{yy}^{-1} \iff a \Sigma_{yy} = \Sigma_{xy}$$

$$a = \begin{pmatrix} 0 & 0 & e^{-\alpha \Delta} \end{pmatrix} \iff a \begin{pmatrix} 1 & e^{-\alpha T} & e^{-2\alpha T} \\ e^{-\alpha T} & 1 & e^{-\alpha T} \\ e^{-2\alpha T} & e^{-\alpha T} & 1 \end{pmatrix} = e^{-\alpha \Delta} \begin{pmatrix} e^{-2\alpha T} & e^{-\alpha T} & 1 \end{pmatrix}$$

$$\hat{X} = \begin{pmatrix} 0 & 0 & e^{-\alpha \Delta} \end{pmatrix} y = e^{-\alpha \Delta} X(3T)$$

MSE:

$$\mathsf{E}[(X(3T+\Delta) - \hat{X})^{2}] = \Sigma_{xx} - \Sigma_{xy}\Sigma_{yy}^{-1}\Sigma_{yx} = r_{xx}(0) - a\Sigma_{xy}^{T} = 1 - e^{-2\alpha\Delta}$$

Note:

•

$$\Delta \to \infty \Rightarrow \begin{cases} a \to 0 \\ \hat{x} \to 0 \quad \text{zero-mean process} \\ \text{MSE} \to 1 \end{cases}$$

• The estimator/estimate depends only on X(3T), since X(t) is a Markov process.

References

[1] Thomas Kailath, Ali H. Sayed, and Babak Hassibi. *Linear Estimation*. Prentice-Hall, Inc, 2000. ISBN 0-13-022464-2.