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We will start off by studying the least squares estimator.

Theorem 1. Let X and Y be two jointly distributed random variables. The least squares (minimum
variance, MV) estimator X̂ of X given Y is

X̂ = EX |Y
[
X
]

and x̂ = EX |Y=y
[
X
]

is the matching (deterministic) estimate.

Proof. Let X̃ = X − X̂ = X −h(Y ), then we seek the function h(·) that solves

min
h(·)

E[X̃∗X̃ ],

where A∗ is the Hermitian transpose of A.

Note: EXY
[
g∗(Y )X

]
= EX

[
EX |Y

[
g∗(Y )X

]]
= EY

[
g∗(Y )EX |Y

[
X
]]

E
[
X̃∗X̃

]
= E

[
(X − X̂)∗(X − X̂)

]
= E

[(
X −EX |Y

[
X
]
+EX |Y

[
X
]
− X̂

)∗(X −EX |Y
[
X
]
+EX |Y

[
X
]
− X̂

)]
=
/

g(Y ) = EX |Y
[
X
]
− X̂

/
= E

[(
X −EX |Y

[
X
]
+g(Y )

)∗(X −EX |Y
[
X
]
+g(Y )

)]
= E

[(
X −EX |Y

[
X
])∗(X −EX |Y

[
X
])]

+E
[
g∗(Y )g(Y )

]
+2Re E

[
g∗(Y )

(
X −EX |Y

[
X
])]

︸ ︷︷ ︸
=EY

[
g∗(Y )EX |Y [X−EX |Y [X ]]

]
=0

= E
[(

X −EX |Y
[
X
])∗(X −EX |Y

[
X
])]

+E
[(
EX |Y

[
X
]
− X̂

)∗(
EX |Y

[
X
]
− X̂

)]
This expression is minimized by X̂ = E[X |Y ], as both terms are positive and only the second depends
on X̂ .
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1 Conditional vs Unconditional MSE
There are two possibilities versions of MSE:

Unconditional:
E
[(

X − X̂(Y )
)∗(X − X̂(Y )

)]
(expectation of both X and Y )

Conditional:
EX |Y=y

[
(X − X̂(Y ))∗(X − X̂(Y ))

]
= EX |Y=y

[
X∗X

]
− x̂∗x̂

Generally the unconditional and the conditional MSE are not the same, but in the Gaussian case they are!
(See HW #1.)

2 Unbiasedness
Unbiasedness is defined as the estimator/estimate that on average assumes the true value, that is

Estimator:
EXY

[
X − X̂(Y )

]
= EX

[
X
]
−EY

[
EX |Y

[
X
]]

︸ ︷︷ ︸
EX [X ]

= 0

Estimate:
EX |Y

[
X − x̂

]
= EX |Y=y

[
X
]
− x̂ = 0

3 Problem with Explicit Solutions
• The estimate x̂ is often a complicated function of the observations y1, . . . ,yN .

• Knowledge of the joint pdf is needed.

4 Linear LS estimation
If our estimate x̂ of X is restricted to be a linear function (including affine mappings), then x̂ only depends
on the first and second order moments of X and Y . If X and Y are jointly Gaussian, then the conditional
mean EY |Y [X ] is a linear function of the observations.

4.1 Gaussian case (Part of HW #1)
If (

x
y

)
∼ N

((
µx
µy

)
,

(
Σxx Σxy
Σyx Σyy

))
then the conditional pdf fX |Y (x|y) is Gaussian with

mean: µx|y = µx +ΣxyΣ−1
yy (y−µy)

covariance: Σx|y = Σxx −ΣxyΣ−1
yy Σyx

which yields
EX |Y=y

[
X
]
= µx +ΣxyΣ

−1
yy (y−µy)
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4.2 Linear LSE (derivation scalar case)
Let X̂ = aY +b and find the a and b that minimizes the MSE E

[
(X − X̂)2

]
.

∂ E
[
(X − X̂)2

]
∂a

= 2E
[
(X −aY −b)

∂ (X − X̂)

∂a

]
=−2

(
E
[
XY
]
−aE

[
Y 2]−bE

[
Y
])

= 0

∂ E
[
(X − X̂)2

]
∂b

=−2E
[
X −aY −b

]
= 0

yielding

a =
E
[
XY
]
−µxµy

E
[
Y 2
]
−µ2

y
=

σ2
xy

σ2
y

b = µx −
σ2

xy

σ2
y

µy

that is

X̂ = µx +
σ2

xy

σ2
y
(Y −µy).

• Note: To compute the estimator only requires the first and second order moments.

• The vector case follows analogous [1, Sec. 3.2.8]:

X̂ = µx +ΣxyΣ
−1
yy (Y −µy).

• Generally we will assume µx, µy = 0 without loss of generality.

4.3 Genereic Solution and Comutational Complexity
If

X̂N =
N

∑
i=0

aT
N,iyN−i,

where N is the number of observations and the zero mean assumption is used, then the coefficients

AN =
(
aN,0 . . . aN,N

)
are the solution to ANRy = Rxy. This is a standard problem to slow, but

• Requires O(N3) operations to compute.

• Often a recursive solution is desired, i.e., AN → AN+1 and x̂N → x̂N+1.

If we impose a structure on Ry we can reduce the complexity and find a recursive update.
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4.3.1 Example:

Assume X(t) to be a wide-sense stationary (wss.) process, where the mean is µx = E
[
X(t)

]
= 0 and the

auto correlation function rxx(τ) = e−α|τ|.
Predict X(3T +∆), ∆ > 0 given X(T ), X(2T ), and X(3T ). The estimator (predictor) should be a llse.

Given that the mean µx = 0 it follows that

X̂ = ay, y =
(
X(T ) X(2T ) X(3T )

)T

where a = ΣxyΣ−1
yy

Σxy = E[X(3T +∆)yT ] = e−α∆
(
e−α2T e−αT 1

)
Σyy =

 1 e−αT e−2αT

e−αT 1 e−αT

e−2αT e−αT 1


assuming that αT ̸= 0 it follows that

a = ΣxyΣ
−1
yy ⇐⇒ aΣyy = Σxy

a =
(
0 0 e−α∆

)
⇐⇒ a

 1 e−αT e−2αT

e−αT 1 e−αT

e−2αT e−αT 1

= e−α∆
(
e−2αT e−αT 1

)
X̂ =

(
0 0 e−α∆

)
y = e−α∆X(3T )

MSE:
E
[(

X(3T +∆)− X̂
)2]

= Σxx −ΣxyΣ
−1
yy Σyx = rxx(0)−aΣ

T
xy = 1− e−2α∆

Note:
•

∆ → ∞ ⇒


a → 0
x̂ → 0 zero-mean process
MSE → 1

• The estimator/estimate depends only on X(3T ), since X(t) is a Markov process.
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