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We will start off by studying the least squares estimator.

Theorem 1. Let X and Y be two jointly distributed random variables. The least squares (minimum
variance, MV) estimator X of X given Y is

X = Expy [X]
and £ = Exy_, [X} is the matching (deterministic) estimate.

Proof. Let X =X —X =X — h(Y), then we seek the function A(-) that solves

min E[X*X],
h(*)

where A* is the Hermitian transpose of A.

Note: Exy[s"(Y)X] =Ex |:EX\Y [g*(Y)X]] =Ey [g*(Y) Exy [X]]

E[X"X] =E[(X - X)" (X—X)] — E[(X ~ Expy [X] + Exy [X] = %) (X ~ Expy [X] +Exy [X] = %) |
= /g =Eyy [X X/ [ (X —Expy [X] +g(¥)) (X - Expy [X] +8(Y))}
= E[(x —Exp [X])" (X — Expy [x])| +E g (V)g(1)] +2Re E[g" (V) (X — Exy [X]) ]
=Ey [g*(Y) EX\Y[X*EX\Y[XH} =0

—E[(xX —Expy [X])" (X — Expy [X]) ]| + E | (Exy [X] = )" (Exy [X] - %)

This expression is minimized by X = E[X|Y], as both terms are positive and only the second depends
onX. O




1 Conditional vs Unconditional MSE

There are two possibilities versions of MSE:

Unconditional:

N N

E[(X—X(¥))" (X —X(Y))] (expectation of both X and ¥)

Conditional: . .
Exyoy [X =X (Y))" (X =X (Y))] = Exjy—y [X*X] —£%

Generally the unconditional and the conditional MSE are not the same, but in the Gaussian case they are!
(See HW #1.)

2 Unbiasedness

Unbiasedness is defined as the estimator/estimate that on average assumes the true value, that is

Estimator: A
Exy [X —X(1)] = Ex [X] — Ey [Exy[X]| =0
N———
Ex [X]
Estimate:

Expy [X —£] = Exp [X] - £=0

3 Problem with Explicit Solutions

* The estimate X is often a complicated function of the observations y,...,yx.

* Knowledge of the joint pdf is needed.

4 Linear LS estimation

If our estimate £ of X is restricted to be a linear function (including affine mappings), then X only depends
on the first and second order moments of X and Y. If X and Y are jointly Gaussian, then the conditional
mean Eyy [X] is a linear function of the observations.

4.1 Gaussian case (Part of HW #1)

If
X Uy Yox va)
~N , )
(y ) <<uy> <2yx Ly
then the conditional pdf fy|y (x[y) is Gaussian with

mean: [, = (i +Zo X (v — 1)

. . B -1
covariance: ¥ =X, — ZX),EW Tox

[y

which yields
Exjy=y [X] =ty + Exyz;yl (r—uy)



4.2 Linear LSE (derivation scalar case)

Let X = aY + b and find the a and b that minimizes the MSE E[(X —X)?].

A

—X)2 _
QBRI =] e[ —ar -5 25X _ o (e[xv] - aE[¥?] — bE[¥]) —0
da da
JE[X-X)"] _ _
5 = 2E[X—a¥ —b] =0
yielding
a— E[XY — Hx Uy _ O-)c)
E[Y2]-u2  o?
o2,
bzﬂx_??ﬂy*
that is

o2
. o
X =+ ?(Y — Hy)-
Y
* Note: To compute the estimator only requires the first and second order moments.
* The vector case follows analogous [1, Sec. 3.2.8]:
X = My + nyzy_yl (Y - ‘uy)

* Generally we will assume p,, 1, = O without loss of generality.

4.3 Genereic Solution and Comutational Complexity

If

N
O T
Xy = ZaN,i)’Nfi;
i=0
where N is the number of observations and the zero mean assumption is used, then the coefficients
AN = (aN,O e aN7N)
are the solution to AyR) = Ry,. This is a standard problem to slow, but
* Requires &' (N?) operations to compute.

» Often a recursive solution is desired, i.e., Ay — Ay+1 and Xy — fv+1.

If we impose a structure on R, we can reduce the complexity and find a recursive update.



4.3.1 Example:

Assume X (1) to be a wide-sense stationary (wss.) process, where the mean is i, = E[X(r)] = 0 and the

auto correlation function ry(7) = e~ /.
Predict X (3T +A), A > 0 given X(T), X(2T), and X (3T). The estimator (predictor) should be a llse.
Given that the mean u, = 0 it follows that

X =ay, y=(x(T) x(1) X(31))"

where a = L X!

Ly =EXQBT+A)y |=e (7T 0T 1)

1 efaT efzaT
Ly=| e 1 e oT
efzaT efaT 1

assuming that a7 # 0 it follows that
a=Yy¥, < a¥, =%,

1 efaT efzaT
a:(O 0 e’O‘A)<:>a e oT 1 e oT :e_‘m(e_z‘” e~ oT 1)
efzaT efaT 1

X=(0 0 e *)y=e¢ *x(37)
MSE:
o\ 2 — _
E[(X(BT+A)—X)"] =L —ZyZ Sy = 1 (0) —aZf = 1 — 24

Note:

a—0
A— 0= ¢ £—0 zero-mean process
MSE — 1

* The estimator/estimate depends only on X (37), since X (¢) is a Markov process.
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