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1 Geometric Interpretation
Recall from Lecture #1, the llse. of x, £ is given by

X= nyZ)Tyly =K,y

Interpretation:
K, =43, & K E[yy*] = Elvy*] & E[(x— Koy)y*] =0

Thus, if the random variables are viewed as vectors, with the inner product defined as (x,y) = E[xy*],
then E[(x — K, y)y*] has the geometric interpretation

<x_K0y7y> :OHX_KOyJ—.%

that is, the estimation error is orthogonal to observations!

Two questions related to the geometric interpretation:

1. Which vector space?

Hilbert space, i.e., a complete normed linear vector space.
2. Is {(x,y) = E[xy*] a proper inner product?
* Linearity: (ax+ By,z) = a(x,z) + B (y,2)

E[(ax+ By)z"] = aE[xz"] + BE[yz"] Check!

* Symmetry: (x,y) = (y,)*
E[xy*] = E[(yx™)*] = E[yx"]* Check!

* Non-degeneracy: (x,x) = 0, i.e., positive semi-definite, and (x,x) = 0 if and only if x = 0.
E[xx*] = X, Covariance matrices are per definition always positive (semi-)definite.



1.1 Geometric Derivation of LLSE

Find a vector £ in the linear space spanned by {y,...,yny} such that ||x — £|| is minimized.

x—xL1lY
(x=%y)=0
Eloy™] = Ko Elyy’]
K, =ZyX,)

2 Winer filtering (WF)

k

Given the observations {y;};___., find the llse. of xj,.

Assumptions: x; and y; are scalar processes, that are jointly stationary with exponentially
bounded (cross-)covarainace, i.e., |ry (k)| < Ka Kk, K > 0,0 < ot < 1, then a spectrum exists.

That is, find
fern = Y heivi-is
i=0
where Ay ; is possibly time varying filter coefficients subjects to E[(xy, — #+n)?] is minimized.

smoothing filtering prediction
]
0 n>0

cooy Yk—25YVk—15Yk

Il &[]

n<0 n
Orthogonality properties gives, for all j < k:
Xt — Xk L Vi

(rn— Y e iyiinyj) =0,
i=0

Elesny] = Y hui Elvi—iy’l,
i=0

rek+n—j) =Y hpiry(k—i— j).
j=0
Make a change variable, k — j — £, gives

ro(C+n) =Y heyjiry(l—i), V£>0.
i=0

Note, neither 7y, (¢ +n) nor ry, (¢ — i) depend on j; hence, Ay j; = h;, i.e., the filter coefficients are time
invariant.



Wiener-Hopf equation:
ry(l+n) = Zhry} —i), V£>0.

If: * Y~_.: Non-causual Wiener filter (WF, z-transform), easy to solve.
. ZZ: FIR (finite impulse response) WF (linear system equation), easy to solve.
* )5 Casual WE.

« Y~!. Anti-casual WFE.

2.1 Spectral Factorization

The spectrum of a signal yy

7=el®

CD v(2) = ff{ry} )} = Zryv
acf
Note, ryy(k) = ryy(—k) = ®yy(z) = Py (z~!) which implies that P,y (z) has symmetry with respect to
mirroring in the unit circle. Hence, if z = r; has a pole (zero) in the unit circle, then z = r;” lis also a pole
(zero).
If &y, (z) has no poles of zeroes on the unit circle, i.e., 0 < @y, (@) < o Yo, then

% i (z—ri) . i =)

P = Oe¢ e
» () "T—r) "G —p)

=T (z), stable, causal =T*(z~*), stable, anti-causual

b

assuming |r;|(1, |p;| (1, and 62)0.

e, white noise ek

Vi 7@ |
Dee
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whitening filter

2.2 Additive Decomposition

Let the sequence { f; } have a 2 -transform that exist in an annulus containing the unit circle. Then

o IS 1

—k —k —k
Fiz)=Y fz*= Y fiz* + Y fiz
k:*°° k:() k:*cc
[F(z)]+ casual part  [F(z)]_ strictly anti-causal part



2.3 Solving the Wiener-Hopf equation

Original problem: -
Yk : Ketn rxy(£+n):2hir},y(£—i)7 VE=0
i=0

— H;}(Z) —
New problem:
Different filter coefficients

L’ 1/T(2) }i>’ H(2) @ /

i=0
T Fre(i+n), 1:20
0, i<O0

= HE,(2) = [@u(2)2"]

Putting it all together

() —ou= (3 &)
w= () S
Super formula:
6@ X B, = G(2) Dy G (277)
G(Z) _ (1/7(;(Z) (1)> E— éi)xe — (’i)xy/T*<Zi*>
¢ (= [£ P o 1 z"éxy(z>]
= 0= 7] = 0= )

Note: A factor z™" is in some books added to H{(z). Without this factor (as given above) £, =

HE, (A)yx and with the factor £y ,x = A™"H{ (A)yi+n. Be sure to know which convention you are adher-
ing to, and both works just fine.



