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Lecture 1 and 2 dealt with point estimates of x given the observations Y = {y1, . . . ,yN}, i.e., x̂ = g(Y ) and
achieves MSE.

Ex: Planned travel to Swedish coast:

• lse. predicted temperature 15 ◦C

• lse. predicted rain 15mm

What to bring?
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More useful forecasting given the posterior pdf p(x|y), x =
(
rain temp.

)T
. Note the multimodal

distributions.

1 Bayesian Approach
• Instead of a point estimate, calculate the posterior pdf p(x|y). Steps:

1. Prior distribution p(x).

2. Apply Bayes’ rule:

p(x|y) = p(y|x)p(x)
p(y)

,
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where the likelihood p(y|x) (comprising the information in the measurement) is combined
with the prior p(x), and p(y) =

∫
p(y,x)dx is a normailizing constant.

3. Point estimate (if required):

x̂MMSE =
∫

xp(x|y)dx

x̂MAP = argmax
x

p(x|y),

where: MAP — maximum a aposteriori and MMSE — minimum mean squared error.

• Generally computationally demanding to calculate the posterior distribution.

• How to handle the case when x is time-varying and observations are received sequentially?

Le 2: Casual Wiener Filter:

H(z)
Yk = {yi}k

i=−∞ x̂k llse. given Yk

Signal model:
Φyy(z) T (z)
Φxy(z) H(z) = 1

T (z)

[
Φxy(z)

T ∗(z−∗)

]
+

Where T (z) is the spectral factorization.
H(z) — IIR filter for sequential estimation of x̂k.

2 State-Space Models (SSM)
Linear discrete-time SSM:

xk+1 = Fkxk +Gkwk

yk = Hkxk + vk

• xk (n×1) state vector
• wk (m×1) process noise
• vk (p×1) observation noise
• yk (p×1) observation vector

• x0 initial state
• Fk (n×n) system matrix
• Gk (n×m) noise gain matrix
• Hk (p×n) observation matrix

x0, wk, and vk are stochastic quantities with:
• E

[
x0
]
= 0, E

[
wk

]
= 0, E

[
vk
]
= 0 ∀k

• E
[
x0x∗0

]
= P0, E[x0v∗k

]
= 0

• E

[(
wk
vk

)(
wl
vl

)∗]
=

(
Qk Sk
S∗k Rk

)
δkl (δkl Kronecker’s delta function)

NB: If x0, vk, and wk are jointly Gaussian, so are xk and yk, due to the linear model.
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General SSM:
(in order of increasing generality)

• Nonlinear: xk+1 = fk(xk,wk)

yk = hk(xk)+ vk

• Implicit: fk(xk+1,xk,wk) = 0
hk(yk,xk,vk) = 0

• pdf: xk+1|k|xk ∼ p(xk+1|xk)

yk|xk ∼ p(yk|xk)

2.1 Markov process
If vk and wk are white, then

p(xk+1|x1:k) = p(xk+1|xk,Xk−1) = p(xk+1|xk)

where the last equality utilizes the Markov property. That is, everything worth knowing about the past is
available in the last sample!

2.2 General Bayesian Solution
Goal: Recursively calculate p(xk|Yk), where Yk := {yi}k

i=1.

Bayes’ rule:
p(A|B,C) =

p(B|A,C)p(A|C)

p(B|C)

Measurement update

p(xk|Yk) =
p(yk|xk,Yk−1)p(xk|Yk−1)

p(yk|Yk−1)

=

likelihood specified by meas. model︷ ︸︸ ︷
p(yk|xk,Yk−1)

priori (predicted) dist.︷ ︸︸ ︷
p(xk|Yk−1)∫

p(yk|xk)p(xk|Yk−1)dxk

Time update

p(xk|yk−1 =
∫

p(xk,xk−1|Yk−1)dxk−1

=
∫

p(xk|xk−1,Yk−1)p(xk−1|Yk−1)dxk−1 =
/

Markov process
/

=
∫

p(xk|xk−1)︸ ︷︷ ︸
specified by state transition model

p(xk−1|Yk−1)dxk−1
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Problems:

• How to represent the distributions?

• How to calculate the integrals?

Representations of the distributions:

• Parametric. Only possible for Gaussian (Kalman filter) and a a few others.

• Discrete representation.

– Fixed grid (point-mass filter)

– Stochastic grid (particle filter)

• Gaussian mixture model, i.e., linear combinations of Gaussian distributions

2.3 Linear Gaussian Case — Kalman Filter
xk+1 = Fkxk +Gkwk

yk = Hkxk + vk
E

[(
wk
vk

)(
w∗

l v∗l
)]

=

(
Qk 0
0 Rk

)
δk−l

x0, wk, and vk jointly Gaussian. (Sk = 0 for simplicity.) This results in all relevant distributions being
Gaussian,

p(xk|yk) = N (xk;
mean︷︸︸︷
x̂k|k ,

covariance︷︸︸︷
Pk|k )

p(yk|Yk−1) = N (yk; ŷk|k−1,Re,k)

p(xk|Yk−1 = N (xk; x̂k|k−1,Pk|k−1)

Now:

x̂k|l = E
[
xk|Yl

]
Pk|l = E

[
(xk − x̂k|l)(xk − x̂k|l)

∗]
Goal: Recursively calculate x̂k|k and Pk|k.

Recall: If u and z are jointly Gaussian, then

pu|z(u|z) = N (u; µu|z,Σu|z),

where
µu|z = µu +ΣuzΣ

−1
zz (z−µz)

Σu|z = Σuu −ΣuzΣ
−1
zz Σzu
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2.4 Measurement update (x̂k|k−1,Pk|k−1)→ (x̂k|k,Pk|k)

((
xk
yk

)
∼ N (

(
x̂k|k−1
ŷk|k−1

)
,

(
Pk|k−1 A

A∗ Re,k

))
ŷk|k−1 = E

[
yk|Yk−1

]
= E

[
Hkxk + vk|Yk−1

]
= Hkx̂k|k−1

A = E
[
(xk − x̂k|k−1)(yk − ŷk|k−1)

∗]= E
[
(xk − x̂k|k−1)(xk − x̂k|k−1)

∗]H∗
k = Pk|k−1H∗

k

Re,k = E
[
(yk − ŷk|k−1)(yk − ŷk|k−1)

∗]= HkPk|k−1H∗
k +Rk

yielding

x̂k|k =

µu︷ ︸︸ ︷
x̂k|k−1+

Σuv︷ ︸︸ ︷
Pk|k−1H∗

k (

Σzz︷ ︸︸ ︷
HkPk|k−1H∗

k +Rk)
−1(yk −

µz︷ ︸︸ ︷
ŷk|k−1)

Pk|k = Pk|k−1︸ ︷︷ ︸
Σuu

−Pk|k−1H∗
k︸ ︷︷ ︸

Σuz

(HkPk|k−1H∗
k +Rk︸ ︷︷ ︸

Σzz

)−1 HkPk|k−1︸ ︷︷ ︸
Σzu

2.5 Time update (x̂k|k,Pk|k)→ (x̂k+1|k,Pk+1|k)

x̂k+1|k = E
[
xk+1|Yk

]
= E

[
Fkxk +Gkwk|Yk

]
=
/

wl ⊥ yk, l ≤ k
/

= Fkx̂k|k

Pk+1|k = E
[
(xk+1 − x̂k+1|k)(xk+1 − x̂k+1|k)

∗]
= E

[
(Fkxk +Gkwk −Fkx̂k|k)(Fkxk +Gkwk −Fkx̂k|k)

∗]= FkPk|kF∗
k +GkQkG∗

k

Summary Kalman Filter:

Initialization
x̂0|−1 = x0

P0|−1 = Π0

Measurement Update:
x̂k|k = x̂k|k−1 +Pk|k−1H∗

k (HkPk|k−1H∗
k +Rk)

−1(yk −HkHkx̂k|k−1)

Pk|k = Pk|k−1 −Pk|k−1H∗
k (HkPk|k−1H∗

k +Rk)
−1HkPk|k−1

Time Update
xk+1|k = Fkx̂k|k

Pk+1|k = FkPk|kF∗
k +GkQkG∗

k
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