Lecture #3

Gustaf Hendeby gustaf.hendeby@liu.se

Version: 2023-11-11

Lecture 1 and 2 dealt with point estimates of x given the observations $Y = \{y_1, \dots, y_N\}$, i.e., $\hat{x} = g(Y)$ and achieves MSE.

1 Bayesian Approach

- Instead of a point estimate, calculate the posterior pdf p(x|y). Steps:
 - 1. Prior distribution p(x).
 - 2. Apply Bayes' rule:

$$p(x|y) = \frac{p(y|x)p(x)}{p(y)},$$

where the likelihood p(y|x) (comprising the information in the measurement) is combined with the prior p(x), and $p(y) = \int p(y,x) dx$ is a normalizing constant.

3. Point estimate (if required):

$$\hat{x}^{\text{MMSE}} = \int x p(x|y) dx$$
$$\hat{x}^{\text{MAP}} = \underset{x}{\text{arg max}} p(x|y),$$

where: MAP — maximum a aposteriori and MMSE — minimum mean squared error.

- Generally computationally demanding to calculate the posterior distribution.
- How to handle the case when x is time-varying and observations are received sequentially?

Le 2: Casual Wiener Filter:

$$\underbrace{Y_k = \{y_i\}_{i=-\infty}^k}_{K} \underbrace{H(z)} \xrightarrow{\hat{x}_k} \text{llse. given } Y_k$$

Signal model:
$$\Phi_{yy}(z) \xrightarrow{\hspace*{1cm}} T(z) \xrightarrow{\hspace*{1cm}} H(z) = \frac{1}{T(z)} \left[\frac{\Phi xy(z)}{T^*(z^{-*})} \right]_+$$

Where T(z) is the spectral factorization.

H(z) — IIR filter for sequential estimation of \hat{x}_k .

2 **State-Space Models (SSM)**

Linear discrete-time SSM:

$$x_{k+1} = F_k x_k + G_k w_k$$
$$y_k = H_k x_k + v_k$$

- x_k ($n \times 1$) state vector
- $w_k (m \times 1)$ process noise
- $v_k (p \times 1)$ observation noise
- $y_k (p \times 1)$ observation vector

- x_0 initial state
- F_k $(n \times n)$ system matrix
- G_k $(n \times m)$ noise gain matrix
- $H_k(p \times n)$ observation matrix

 x_0 , w_k , and v_k are stochastic quantities with:

- $E[x_0] = 0$, $E[w_k] = 0$, $E[v_k] = 0 \quad \forall k$
- $E\begin{bmatrix} x_0 x_0^* \end{bmatrix} = P_0$, $E[x_0 v_k^*] = 0$ $E\begin{bmatrix} w_k \\ v_k \end{bmatrix} \begin{pmatrix} w_l \\ v_l \end{pmatrix}^* = \begin{pmatrix} Q_k & S_k \\ S_k^* & R_k \end{pmatrix} \delta_{kl}$ (δ_{kl} Kronecker's delta function)

NB: If x_0 , v_k , and w_k are jointly Gaussian, so are x_k and y_k , due to the linear model.

General SSM:

(in order of increasing generality)

• Nonlinear:
$$x_{k+1} = f_k(x_k, w_k)$$
$$y_k = h_k(x_k) + v_k$$

• Implicit:
$$f_k(x_{k+1}, x_k, w_k) = 0$$

$$h_k(y_k, x_k, v_k) = 0$$

• pdf:
$$x_{k+1|k}|x_k \sim p(x_{k+1}|x_k)$$

$$y_k|x_k \sim p(y_k|x_k)$$

2.1 Markov process

If v_k and w_k are white, then

$$p(x_{k+1}|x_{1:k}) = p(x_{k+1}|x_k, X_{k-1}) = p(x_{k+1}|x_k)$$

where the last equality utilizes the Markov property. That is, everything worth knowing about the past is available in the last sample!

2.2 General Bayesian Solution

Goal: Recursively calculate $p(x_k|Y_k)$, where $Y_k := \{y_i\}_{i=1}^k$.

Bayes' rule:

$$p(A|B,C) = \frac{p(B|A,C)p(A|C)}{p(B|C)}$$

Measurement update

$$p(x_k|Y_k) = \frac{p(y_k|x_k, Y_{k-1})p(x_k|Y_{k-1})}{p(y_k|Y_{k-1})}$$

$$= \frac{p(y_k|x_k, Y_{k-1})}{p(y_k|x_k, Y_{k-1})} \underbrace{p(x_k|Y_{k-1})}_{p(x_k|Y_{k-1})dx_k}$$

Time update

$$p(x_k|y_{k-1} = \int p(x_k, x_{k-1}|Y_{k-1}) dx_{k-1}$$

$$= \int p(x_k|x_{k-1}, Y_{k-1}) p(x_{k-1}|Y_{k-1}) dx_{k-1} = \Big/ \text{Markov process} \Big/$$

$$= \int \underbrace{p(x_k|x_{k-1})}_{\text{specified by state transition model}} p(x_{k-1}|Y_{k-1}) dx_{k-1}$$

Problems:

- How to represent the distributions?
- How to calculate the integrals?

Representations of the distributions:

- Parametric. Only possible for Gaussian (Kalman filter) and a a few others.
- Discrete representation.
 - Fixed grid (point-mass filter)
 - Stochastic grid (particle filter)
- Gaussian mixture model, i.e., linear combinations of Gaussian distributions

2.3 Linear Gaussian Case — Kalman Filter

$$\begin{aligned} x_{k+1} &= F_k x_k + G_k w_k \\ y_k &= H_k x_k + v_k \end{aligned} \quad \mathsf{E} \left[\begin{pmatrix} w_k \\ v_k \end{pmatrix} \begin{pmatrix} w_l^* & v_l^* \end{pmatrix} \right] = \begin{pmatrix} Q_k & 0 \\ 0 & R_k \end{pmatrix} \delta_{k-l} \end{aligned}$$

 x_0 , w_k , and v_k jointly Gaussian. ($S_k = 0$ for simplicity.) This results in all relevant distributions being Gaussian,

$$p(x_k|y_k) = \mathcal{N}(x_k; \widehat{\hat{x}}_{k|k}, \widehat{P}_{k|k})$$

$$p(y_k|Y_{k-1}) = \mathcal{N}(y_k; \widehat{y}_{k|k-1}, R_{e,k})$$

$$p(x_k|Y_{k-1} = \mathcal{N}(x_k; \widehat{x}_{k|k-1}, P_{k|k-1})$$

Now:

$$\begin{split} \hat{x}_{k|l} &= \mathsf{E}\big[x_k|Y_l\big] \\ P_{k|l} &= \mathsf{E}\big[(x_k - \hat{x}_{k|l})(x_k - \hat{x}_{k|l})^*\big] \end{split}$$

Goal: Recursively calculate $\hat{x}_{k|k}$ and $P_{k|k}$.

Recall: If u and z are jointly Gaussian, then

$$p_{u|z}(u|z) = \mathcal{N}(u; \mu_{u|z}, \Sigma_{u|z}),$$

where

$$\mu_{u|z} = \mu_u + \Sigma_{uz} \Sigma_{zz}^{-1} (z - \mu_z)$$

$$\Sigma_{u|z} = \Sigma_{uu} - \Sigma_{uz} \Sigma_{zz}^{-1} \Sigma_{zu}$$

2.4 Measurement update $(\hat{x}_{k|k-1}, P_{k|k-1}) \rightarrow (\hat{x}_{k|k}, P_{k|k})$

$$\begin{split} & \left(\begin{pmatrix} x_k \\ y_k \end{pmatrix} \sim \mathcal{N}(\begin{pmatrix} \hat{x}_{k|k-1} \\ \hat{y}_{k|k-1} \end{pmatrix}, \begin{pmatrix} P_{k|k-1} & A \\ A^* & R_{e,k} \end{pmatrix} \right) \\ & \hat{y}_{k|k-1} = \mathsf{E}\big[y_k|Y_{k-1}\big] = \mathsf{E}\big[H_k x_k + v_k|Y_{k-1}\big] = H_k \hat{x}_{k|k-1} \\ & A = \mathsf{E}\big[(x_k - \hat{x}_{k|k-1})(y_k - \hat{y}_{k|k-1})^*\big] = \mathsf{E}\big[(x_k - \hat{x}_{k|k-1})(x_k - \hat{x}_{k|k-1})^*\big] H_k^* = P_{k|k-1} H_k^* \\ & R_{e,k} = \mathsf{E}\big[(y_k - \hat{y}_{k|k-1})(y_k - \hat{y}_{k|k-1})^*\big] = H_k P_{k|k-1} H_k^* + R_k \end{split}$$

yielding

$$\begin{split} \hat{x}_{k|k} &= \underbrace{\hat{x}_{k|k-1}}^{\mu_{u}} + \underbrace{P_{k|k-1}H_{k}^{*}}_{P_{k|k-1}H_{k}^{*}} \underbrace{(H_{k}P_{k|k-1}H_{k}^{*} + R_{k})^{-1}}_{\Sigma_{uz}} \underbrace{(y_{k} - \widehat{y}_{k|k-1})}_{Y_{k|k-1}H_{k}^{*}} + R_{k})^{-1} \underbrace{(y_{k} - \widehat{y}_{k|k-1})}_{\Sigma_{uz}} \underbrace{(H_{k}P_{k|k-1}H_{k}^{*} + R_{k})^{-1}}_{\Sigma_{zz}} \underbrace{(H_{k}P_{k}H_{k}^{*} + R_{k})^{-1}}_{\Sigma_{zz}} \underbrace{(H_{k}P_{k}H_{k}^{*} + R_{k})$$

2.5 Time update $(\hat{x}_{k|k}, P_{k|k}) \rightarrow (\hat{x}_{k+1|k}, P_{k+1|k})$

$$\begin{split} \hat{x}_{k+1|k} &= \mathsf{E}\big[x_{k+1}|Y_k\big] = \mathsf{E}\big[F_k x_k + G_k w_k | Y_k\big] = \Big/w_l \perp y_k, l \leq k \Big/ = F_k \hat{x}_{k|k} \\ P_{k+1|k} &= \mathsf{E}\big[(x_{k+1} - \hat{x}_{k+1|k})(x_{k+1} - \hat{x}_{k+1|k})^*\big] \\ &= \mathsf{E}\big[(F_k x_k + G_k w_k - F_k \hat{x}_{k|k})(F_k x_k + G_k w_k - F_k \hat{x}_{k|k})^*\big] = F_k P_{k|k} F_k^* + G_k Q_k G_k^* \end{split}$$

Summary Kalman Filter:

Initialization

$$\hat{x}_{0|-1} = x_0$$
$$P_{0|-1} = \Pi_0$$

Measurement Update:

$$\hat{x}_{k|k} = \hat{x}_{k|k-1} + P_{k|k-1}H_k^* (H_k P_{k|k-1}H_k^* + R_k)^{-1} (y_k - H_k H_k \hat{x}_{k|k-1})$$

$$P_{k|k} = P_{k|k-1} - P_{k|k-1}H_k^* (H_k P_{k|k-1}H_k^* + R_k)^{-1} H_k P_{k|k-1}$$

Time Update

$$x_{k+1|k} = F_k \hat{x}_{k|k}$$

$$P_{k+1|k} = F_k P_{k|k} F_k^* + G_k Q_k G_k^*$$