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Smoothing
In many applications an delayed estimate might be tolerable or off-line processing is interesting. This
way, more data can be used in the estimate, providing

• higher accuracy

• more complex estimators.

Different Types of Smoothers
Assume:

x̂l|k = llse of xl given {y0,y1, . . . ,yk}

Filter:
x̂k|k Data growing

k

xk

Predictor:
x̂k+n|k, n > 0

Data growing
k k+n

xk+n

fixed lag, n

Fixed point smoother:
x̂l|k, l-fixed, k-growing

Data growing
kl

xl fixed

Fixed lag smoother:
x̂k−n|k, n > 0, n-fixed,
k-growing Data growing

kl

xk−n fixed lag, n

Fixed interval smoother:
x̂l|k, k = M, 0 ≤ l ≤ M

Data fixed
kl

xl moving
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Applications
• Fixed point smoothing: Initial condition estimation.

• Fixed lag smoothing: Online processing with delay.

• Fixed interval smoothing: Offline processing.

Fixed Point Smoothing (see ex 4 in HW #3)
Goal: Find x̂ j|k for all k > j, j-fixed

Trick: Introduce the augmented state vector
(
x∗k (xa

k)
∗)∗ and the augmented state-space model(

xk+1
xa

k+1

)
=

(
Fk 0
0 I

)(
xk
xa

k

)
+

(
Gk
0

)
wk

yk =
(
Hk 0

)(xk
xa

k

)
+ vk.

Note, the dynamic transition of the augmented part of the state xa
k ≡ x j is constant.

Apply the Kalman filter recursion

Gain: (
Kp,k
Ka

p,k

)
=

(
Fk 0
0 I

)(
Pk|k−1 (Pa

k|k−1)
∗

Pa
k|k−1 Paa

k|k−1

)(
H∗

k
0

)
(HkPk|k−1H∗

k +Rk)
−1,

where Paa
k|k−1 = Paa

k|k = E
[
(x j − x̂ j|k)(x j − x̂ j|k)

∗], yielding

Kp,k = FkPk|k−1H∗
k (HkPk|k−1H∗

k +Rk)
−1

Ka
p,k = FkPa

k|k−1H∗
k (HkPk|k−1H∗

k +Rk)
−1

Covariance: (
Pk+1|k (Pa

k+1|k)
∗

Pa
k+1|k Paa

k+1|k

)
=

(
Fk 0
0 I

)(
Pk|k−1 (Pa

k|k−1)
∗

Pa
k|k−1 Paa

k|k−1

)(
F∗

k 0
0 I

)

−
(

Kp,k
Ka

p.k

)(
Hk 0

)(Pk|k−1 (Pa
k|k−1)

∗

Pa
k|k−1 Paa

k|k−1

)(
F∗

k 0
0 I

)
+

(
Gk
0

)
Qk
(
G∗

k 0
)

Remark: K(HPH∗+R)K∗ = K(HPH∗+R)(HPH∗+R)−1HPF∗ = KHPF∗

Pk+1|k = FkPk|k−1F∗
k −Kp,kHkPk|k−1F∗

k +GkQG∗
k standard update

Pa
k+1|k = Pa

k|k−1F∗
k −Ka

p,kHkPk|k−1F∗
k

Paa
k+1|k = Pa

k|k−1 −Ka
p,kHkPa

k|k−1
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Estimate: x̂ j|k = x̂ j|k−1 +Kp,kek

ek = yk −
(
Hk 0

)(x̂k|k−1
x̂a

k|k−1

)
= yk −Hx̂k|k−1

Summary: Standard Kalman filter recursions

x̂ j|k = x̂ j|k−1 +Ka
p,k(yk −Hkx̂k|k−1)

Ka
p,k = Pa

k|k−1H∗
k R−1

e,k

Pa
k+1|k = Pa

k|k−1F∗
k −Ka

p,kHkPk|k−1F∗
k

Paa
k+1|k = Paa

k|k−1 −Kp,kHkPa
k|k−1

Initial condition: x̂a
j| j−1 = x̂ j| j−1 and Pa

j| j−1 = Pj| j−1

Remark:

• Most improvements are obtained after 2–3 time constants of the system.

• Time varying even for time invariant systems.

Fixed Lag Smoother
Goal: Find x̂k−n|k and Pk−n|k, n-fixed, k-growing

Trick: Introduce the state-space model

xk+1

x(1)k+1

x(2)k+1
...

x(n+1)
k+1

=


Fk 0 . . . 0

I 0
. . .

0 I
...

. . . . . .
0 . . . I 0





xk

x(1)k

x(2)k
...

x(n+1)
k

+


Gk
0
0
...
0

wk

yk =
(
Hk 0 0 . . . 0

)


xk

x(1)k

x(2)k
...

x(n+1)
k

+ vk

Note that: x(1)k+1 = xk,x
(2)
k+1 = xk−1, . . . ,x

(n+1)
k+1 = xk−n, yielding x̂(i)k+1|k = xk−i+1|k, i = 1, . . . ,n+1.

Hence: The one-step predictor of the augmented state-space model will give the l.l.s.e. of xk−i given
{y j}k

j=0 for i = 0, . . . ,n.
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Fixed Lag Smoothing Equations:
Standard Kalman filter recursions for the original state-space model.

1: x̂0|−1 = x̂−i|−1 = 0

2: P(0)
k|k−1 = Pk|k−1

3: for i=1,. . . , N do
4: x̂(i+1)

k+1|k = x̂(i)k|k−1 +K(i+1)
p,k ek

5: K(i+1)
p,k = P(i)

k|k−1H∗
k R−1

e,k

6: P(i+1)
k+1|k = P(i)

k|k−1(Fk −Kp,kHk)
∗

7: Pk−i|k = Pk−i|k−1 −P(i)
k|k−1H∗

k (K
(i)
p,k)

∗

8: end for

Remark:

• Time invariant for time invariant state-space model.

• If n corresponds to 2–3 time constants almost all info has been included in the estimate x̂k−n|k,
hence a fixed interval smoother gives marginal improvement.

Fixed Interval Smoother
See Bryson-Frazier and Rausch-Tung-Stribel formulas in the book.

Information Filter
If the initial state is completely unknown, then P0 → ∞, which may cause numerical problems. However,
P−1

0 = 0 is quite natural. Propagating P−1
k instead of Pk is referred to the information formulation of the

Kalman filter.

Note: for Gaussian linear state-space systems, then P−1
k is equivalent to the Fisher information matrix.

Derivation of the Information Filter
Assume:

• Sk = 0 (for simplicity)

• Fk non-singular (for simplicity)

Recall:

• (A+BCD)−1 = A−1 −A−1B(C−1 +DA−1B)DA−1

• Kalman filter gain: K f ,k = Pk|k−1H∗
k R−1

e,k = Pk|kH∗
k R−1

k
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Measurement update of P−1
k

Pk|k = Pk|k−1 −Pk|k−1H∗
k (HkPk|kH∗

k +Rk)
−1HkPk|k−1

= (Pk|k−1 +H∗
k R−1

k Hk)
−1

P−1
k|k = P−1

k|k−1 + H∗
k R−1

k Hk︸ ︷︷ ︸
Info. added by the meas.

Time update of P−1
k

Pk+1|k = FkPk|kF∗
k +GkQkG∗

k

P−1
k+1|k = (FkPk|kF∗

k +GkQkG∗
k)

−1 = {Ak = F−∗
k P−1

k|k F−1
k }

= (A−1
k +GkQkG∗

k)
−1

= Ak − AkGk(G∗
kAkGk +Q−1

k )−1G∗
kAk︸ ︷︷ ︸

reduction in information when predicting

= (I −AkGk(G∗
kAkGk +Q−1

k )−1G∗
k)Ak

= (I −BkG∗
k)Ak,

where Bk = AkGk(G∗
kAkGk +Q−1

k )−1.

State Recursions
Definition: âk|k−1 = P−1

k|k−1x̂k|k−1 and âk|k = P−1
k|k x̂k|k

Measurement update:

x̂k|k = x̂k|k−1 +Pk|kH∗
k R−1

k (yk −Hkx̂k|k−1)

P−1
k|k x̂k|k = P−1

k|k x̂k|k−1 +H∗
k R−1

k yk −H∗
k R−1

k Hkx̂k|k−1

= P−1
k|k−1x̂k|k−1 +H∗

k R−1
k yk

âk = âk|k−1 +H∗
k R−1

k yk

Time update:

x̂k+1|k = Fkx̂k|k

âk+1|k = P−1
k+1|kx̂k+1|k = P−1

k+1|kFkx̂k|k = (I −BkG∗
k)AkFkx̂k|k

= (I −BkG∗
k)F

−∗
k âk|k
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Summary:

Measurement update:

âk|k = âk|k−1 +HkR−1
k yk

P−1
k|k = P−1

k|k−1 +H∗
k R−1

k Hk

Time update:

âk+1|k = (I −BkG∗
k)F

−∗
k âk|k

Pk+1|k = (I −BkG∗
k)Ak

where

Ak = F−∗
k Pk|kF−1

k

Bk = AkGk(G∗
kAkGk +Qk)

−1
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